Chapter 16: Synchronous Generators
Synchronous Generators

- Three-phase synchronous generators are the primary source of all electrical energy
 - power ratings up to 1500 MW
 - stator construction is the same as and induction machine
 - three-phase windings distributed on the stator
 - arranged in pairs of poles
 - rotor construction forms a dc magnet
 - permanent magnet or electro-magnet with a dc current
 - number of poles equals the number of winding sets on the stator
 - the ac frequency depends on the rotor’s speed of rotation and the number of poles
 - the rotor speed is the synchronous speed \(f = \frac{n_s \cdot P}{120} \)
Synchronous Generators

pilot exciter
25 kW

main exciter
2400 kW, 400 V

3-phase alternator
500 MW, 12 kV, 60 Hz

3-phase stator winding

exciting coil

rotor

pole

air gap

brush

slip ring

commutator

I_c

I_x

6000 A

A

B

C

alternator terminals
Synchronous Generators

• Example
 – a hydraulic turbine turning at 200 rpm is connected to a synchronous generator
 – if the induced voltage has a frequency of 60 Hz, how many poles does the rotor have?
Stator Construction

- From an electrical standpoint the stator of a synchronous machine and an induction machine are identical
 - the windings are usually connected in a wye configuration
 - the voltage per phase is only $\frac{1}{\sqrt{3}}$ or 58% of the line voltage, permitting a reduction in the amount of dielectric insulation
 - under load, the voltage can become distorted and no longer sinusoidal
 - the distortion is mainly due to third harmonic voltages (180 Hz)
 - with a wye connection, the third harmonic voltages cancel between the line-to-line voltages
 - with a delta connection, the third harmonic voltage add and appear on the line-to-line voltages
Rotor Construction

- Two general types
 - salient pole (slow speed) and cylindrical (high speed) rotors
- Coil layouts are designed to produce a fixed set of N and S magnetic poles
 - dc current is supplied to the coils to create the magnetic field
- Damper windings
 - in addition to the dc field windings, a squirrel-case winding is added
 - under normal conditions, this winding does not carry any current
 - when sharp changes in loading occurs, the rotor speed begins to fluctuate, producing momentary speed variations
 - large currents begin to flow, producing dampen forces
Field Excitation

• Three methods of excitation
 – slip rings link the rotor’s field winding to an external dc source
 – dc generator exciter
 • a dc generator is built on the same shaft as the ac generator’s rotor
 • a commutator rectifies the current that is sent to the field winding
 – brushless exciter
 • an ac generator with fixed field winding and a rotor with a three-phase circuit
 • diode/SCR rectification supplies dc current to the field windings
Field Excitation

Diagram of field excitation system with labels:
- Pilot exciter
- Main exciter
- Stationary field
- 3-phase bridge rectifier
- 3-phase rotor
- Alternator terminals
- Stator
- Pole
- Rotor
- Exciting coil
- 3-phase stator winding
- Air gap
- Currents I_c and I_x
No-load Saturation Curve
Equivalent Circuit

- Induced voltage, E_0
 - voltage induced as flux cuts across windings
- Winding inductance $X_s = 2\pi f L$
- Winding resistance
 - usually 1/100 of the size of the reactance
 - often neglected in the equivalent circuit
Synchronous Reactance

- The value of X_S can be determined by measurements of the open-circuit and short-circuit tests
 - Tests are conducted under an unsaturated core condition
 - Open-circuit test is conducted at rated speed with the exciting current I_{xn} adjusted until the generator terminals are at rated voltage, E_n
 - Short-circuit test is conducted at rated speed with the exciting current I_{xn} gradually raised from 0 amps up to the original value used in the open-circuit test
 - The resulting short-circuit current I_{sc} is measured, allowing the calculation of X_S:
 $$X_S = \frac{E_n}{I_{sc}}$$
Synchronous Reactance

• Example
 – a 3-phase synchronous generator produces an open-circuit line voltage of 6928 V when the dc exciting current is 50 A
 • when the ac terminals are short-circuited under the same excitation, the three line currents are found to be 800 A
 – calculate
 • the per-phase synchronous reactance of the generator
 • the resulting terminal voltage if a 12-ohm, wye-connected load is connected to the generator
Per Unit Generator Impedance

- Generator nameplates denote the synchronous reactance, X_S, in per-units or percentage of the generator’s base impedance, Z_B
 - the impedance base is determined from the full-load power and rated line voltage

\[
Z_B = \frac{E_B^2}{S_B} = \frac{(E_{n-LL})^2}{S_{3\phi-FL}} = \frac{(\sqrt{3} E_{n-LN})^2}{3 \cdot S_{1\phi-FL}} = \frac{(E_{n-LN})^2}{S_{1\phi-FL}}
\]
Per Unit Generator Impedance

• Example
 – a 30 MVA, 15 kV 60 Hz generator has a synchronous reactance of 1.2 pu and a resistance of 0.02 pu
 – calculate
 • the generator’s base voltage, power, and impedance
 • the actual value of the synchronous reactance
 • the actual winding resistance, per phase.
 • the total full-load copper losses
Short-circuit Ratio

• Instead of expressing the synchronous reactance as a percent of base impedance on the generator’s nameplate, the short-circuit ratio is often used for larger machines
 – by definition, the short-circuit ratio is the value of the field current, I_{x1}, needed to generate the rated terminal voltage on an open circuit, divided by the field current, I_{x2}, needed to generate the rated full-load current with short-circuit terminals
 – the short-circuit ratio is equal to the reciprocal of the per-unit synchronous reactance value, X_S

$$\frac{I_{X1}}{I_{X2}} = \frac{1}{X_S} = \frac{I_{SC}}{E_n}$$
Homework

• Problems 16-13, 16-16, and 16-19